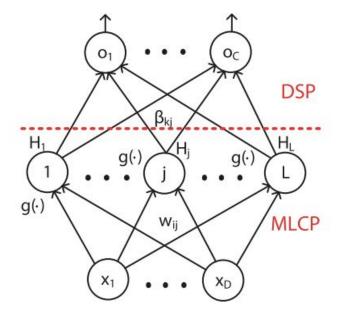
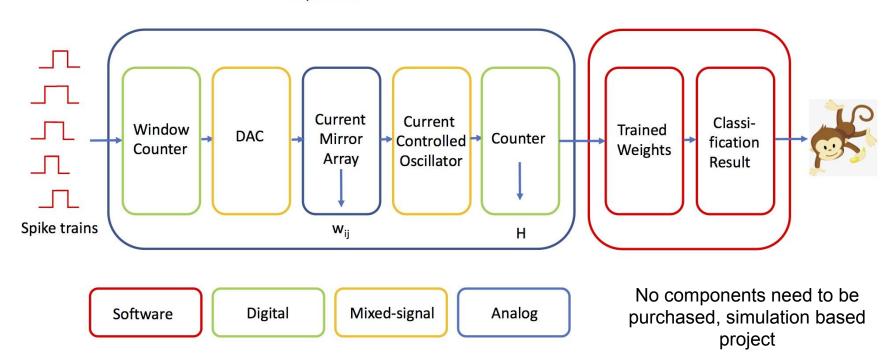
Mixed Signal Neural Decoder


Rebekah Zhao, Anil Bilgin, Cody Yang

Objectives

- Design an implantable, power-efficient ASIC to perform neural decoding via Machine Learning
- Existing solutions
 - PC based decoding: very high accuracy, power hungry and not implantable
 - Separate neural decoding from neural recording: high wireless data transmission rate
 - FPGA: consumes more power than ASIC, not implantable
 - VLSI circuit: Achieves high accuracy, but some blocks are less efficient than their analog equivalents

Our Solution

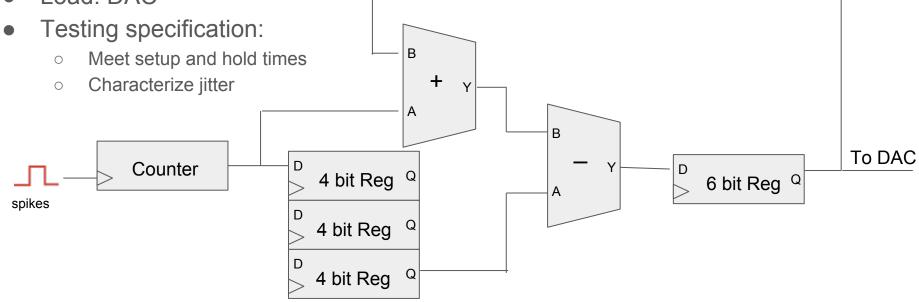

- Extreme Learning Machine (ELM) algorithm
 - Specific type of SLFN, where input weights and biases can be random (and not trained) if the activation function is infinitely differentiable.
- Our assumptions & Implementation details
 - Take in sorted spike trains as inputs from multiple channels
 - Implement hidden layer with mixed-mode IC
 - Implementing the output layer of the ELM in software (MATLAB)
- What we would demo
 - Schematic of circuit design
 - Simulation results of algorithm
 - Layout of circuit design

Design Diagram


Machine learning coprocessor

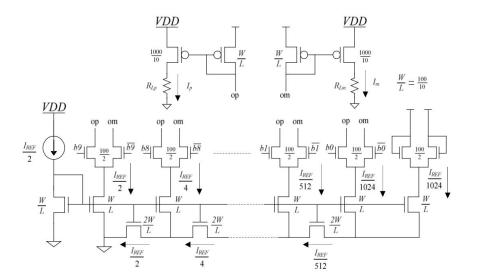
Tools

- Verilog-AMS: a tool to simulate mixed-signal circuits
- Cadence: circuit simulation and layout

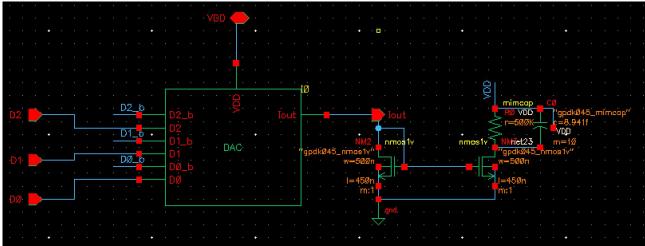


Neural data

- **Data type:** Premotor cortex (PMd) and Primary Motor Cortex (M1) recording from a sequential reaching task of monkey
- **Data content:** Spike sorted data from 67 channels per pre-set time bins for each reaching task, the instantaneous position, velocity and acceleration.
- Data source:
 - Matthew G. Perich, Patrick N. Lawlor, Konrad P. Kording, Lee E. Miller (2018); Extracellular neural recordings from macaque primary and dorsal premotor motor cortex during a sequential reaching task. CRCNS.org. http://dx.doi.org/10.6080/K0FT8J72

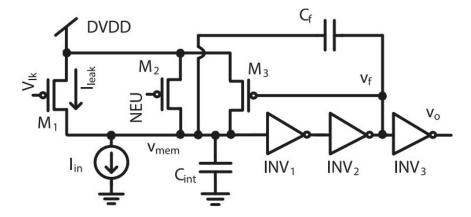

Window Counter

- Input: Spike train (digital signal)
- Output range: 6 bits
- Load: DAC



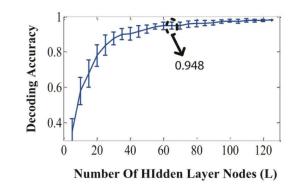
Digital to Analog Converter (DAC)

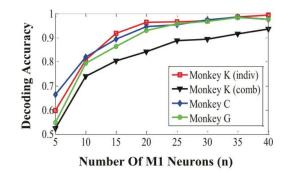
- Input: spike count from window counter (6 bit)
- Output range: 1nA 63nA
- Load: current mirror array
- Testing specification: differential nonlinearity (DNL) ± 3 bits


Testing circuit and result

Current Controlled Oscillator

- Input: current mirror array
- Load: counter
- Output: pulse frequency modulated signal with the frequency proportional to input current
- Testing specification: charging and discharging dynamic; jitter (<0.1%)




Projected timeline

Week	Anil	Rebekah	Cody
2/19		Study and implement CCO	Work on the window counter
2/26	Process dataset into usable format	IO & specs of each component (eg current, noise tolerance, control signals, clocking)	
3/5	Hyperparameter optimization		
3/12	Write verilog-AMS(DAC, window counter, current mirror, CCO, counter)		
3/19	Spring Break!		
3/26	Continue to write Verilog		
4/2	Test our verilog design		
4/9	Build circuit (current mirror)	Build circuit (DAC, CCO)	Build circuit (adder, flip-flops)
4/16	Carnival!		
4/23	Put circuit together and test		
4/30			
5/1	Layout		
5/7	Demo		

Testing plan

- Target specifications:
 - Power consumption 0.4 mW/mm² upper limit
 - Decoding accuracy target ~ 90%
- Testing:
 - Cross validation with 80% of our data while training
 - Test our design with the remaining 20% to measure decoding accuracy
 - Measure power consumption per unit area using Cadence

Risk factors

- Ultra Low power design
 - Subthreshold operation
 - Noise and jitter
- Testing complexity
 - Data conversion between tools (from discrete data to circuit input, from circuit output to discrete data)
 - Simulating device mismatch